

Chemical Biology of the GPCR's

Assessed through split mix libraries

Morten Meldal, Christian W. Tornøe, Thomas E. Nielsen, Jörg Rademann, Frederik Diness, Sebastian Le Quement, Lamin Bouakaz, Boqian Wu, Ole Thaastrup Grith Hagel

Integrated Solid Phase Combinatorial Chemistry Carlsberg Laboratory

Morten Meldal et al.

Casette for Expression of GPCR + Reporter

Morten Meldal et al. Carlsberg Laboratory

Establishing stable cellular functional - and specificity assays

PEGA-Cell adhesion peptide: negative control

The single vector construct and cloning of PAC1, VPAC1 and VPAC2

Cloning is essential

The single vector and cloning of hPAC, VPAC1 and 2

VPAC1 and 2 cloned. PACAP38 agonist assay

VPAC1 and 2 cloned. Antagonist assay, 20 nM PACAP38, 24 h

VPAC1Ag HSDAVFTNSYRKVLKRLSARKLLQDIL-NH₂ VPAC1Ant

The single vector construct with and without antagonists

PACAP-38 stimulation of Hek293 cells. Antagonist addition before or after agonist addition.

Maxadilan a vascodilatory peptide from sandfly saliva Maxadilan: CDATCQFRKAIDDCQKQAHHSNVLQTSVQTTATFTSMDTSQLPGNSVFKECMKQKKKEFKA Maxadilan D4: CDATCQFRKAIDDCQKQAHHSNV------PGNSVFKECMKQKKKEFKAGK

cC

Po

Receptor	Agonist	Conc nM	Antagonist	Conc nM	Activity	Activity
					24 h	48 h
hPAC1	Pacap38	5			9	5
	Pacap38	5	Maxadilan D4	1000	10	4
	Pacap38	5	Pacap6-38	1000	10	5
hPAC1	Maxadilan	2			10	6
	Maxadilan	2	Maxadilan D4	1000	10	2
	Maxadilan	2	Pacap6-38	1000	9	3
VPAC1	Pacap38	10			10	5
	Pacap38	10	Pacap6-38	1000	9	5
	Pacap38	10	VPAC1-antag.	1000	10	5
VPAC2	Pacap38	10			9	5
	Pacap38	10	Pacap6-38	1000	10	6
	Pacap38	10	VPAC1-antag.	1000	10	7

Scaffolds by N-acyliminium Cascade Chemistry

S

The Intramolecular N-Acyliminium "Pictet-Spengler" Reaction

Stereo-selectivity of the intramolecular cascade reaction

The Aldehyde/Amide Mediated Intramolecular "Click" Reaction

A new highly stereoselective cascade reaction

Free precursor aldehyde MD-simulation

Thiophenes, Benzothiophene and Furane

HPLC crude products

	272_540B.RAW	
ц Т		ստնակակակականականորոնորոնություն *

Quantitative Chemical Transformation: Intramolecular "Click"

s

P C C

Changing from L to D-Trp

The aldehyde/amide "click"-end-product is rigid

Page Indoles in the Intramolecular *N***-Acyliminium Pictet-Spengler Reaction**

Scaffold diversity: The Intramolecular N-Acyliminium Pictet-Spengler Reaction

S

Poe

Scaffold diversity: Non-activated nucleophiles

Scaffold diversity: Strong acid

Scaffold diversity: Deactivated nucleophiles

S

Poe

Scaffold diversity: Fused Aromatic Ring-systems

Scaffold diversity: Heteroatom nucleophiles

 R^2

Scaffold diversity: Suzuki reactions

_Suzuki on aryl iodides

Scaffold diversity: Alkenes as the aldehyde source

s

Poc

Aldehyde Precursor: Alkene Oxidation

s

Aldrhyde Precursors: 2-Vinyl Benzamides

Scaffold diversity: Diketopiperazines

Scaffolds in peptides

Scaffold diversity The Intramolecular *N*-Acyliminium Pictet-Spengler Reaction

3 aldehyde precursors

MD, 450 K, in H2O

Scaffold diversity and Ring-size: The influence of aldehyde precursor

6,6-rings, C-nucleophiles

Box-protected Aldehydes

S

O C

Scaffold diversity The Intramolecular *N*-Acyliminium Pictet-Spengler Reaction

	0 ⁰ <	Phe-Gl	y-O		0	O _{∕∕} Phe−(Gly-OH
Boc	N H	n X R	Α -	or B			
Entr y	N,O-acetal	X	R	Y	n	Reaction condition s ^a	Product , purity (%)
1	68	Ot-Bu	Н	0	0	В	75 , >95
2	69	Ot-Bu	Me	0	0	A or B	76 , >95
3	70	OTrt	Н	0	1	A or B	77 , >95
4	71	NHBoc	Н	NBoc	0	А	78 , >95
5	72	NHBoc	Н	NBoc	1	А	79 , 86
6	73	NHBoc	Н	NBoc/ NH	2	A/B	80 , 0
7	74	STrt	Н	S	0	A or B	81 , >95

α (or β)-Amino acids as a source of diversity

S

Imidazolinones and 1,3 piperazin-2-ones

Fused β-carbolino imidazolinones

Exploiting Amino Acid Diversity in Carbamyliminium Chemistry

Imidazolones as electrophiles in the Pictet-Spengler Reaction

P C C

Imidazolones as Nucleophiles in the Pictet-Spengler Reaction

S

Poc^C

Scaffold diversity: Novel fluorescent compounds

S

Po C

oxidation (initially by air)

R=H, F, Br

Oxidation of Pictet-Spengler products

Sub.	Solv.	DDQ	Chloranil	BQ
1	DCM	90% (24h)	33% (24h)	0% (24h)
1	5% TFA	100% (2h)	10% (24h)	0% (24h)
3	DCM	0% (decomp)	0% (24h)	0% (24h)
2	50/ TEA	1000/(2h)	100/(24h)	100/(24h)
3	3% II'A	100% (211)	10% (2411)	10% (2411)
5	DCM	0% (decomp)	25% (24h)	0% (24h)
5	5% TFA	100% (2h)	100% (24h)	0% (decomp)

Peroxides: only ~33% yield Oxygen/TFA: 25%

Scaffold diversity The Intramolecular *N*-Acyliminium Pictet-Spengler Reaction

Entry	Solvent	Filter 1	Filter 2	Filter 3 ^b	Filter 4
		ex480/30	ex500/20	ex540/25	ex550/25
		em535/40	em535/30	em605/50	em605/70
1	0.1 M HCl	91 ms ⁻¹	39 ms ⁻¹	1487 ms ⁻¹	814 ms ⁻¹
2	water	159 ms ⁻¹	41 ms ⁻¹	605 ms ⁻¹	487 ms ⁻¹
3	P-buffer ^[c]	510 ms ⁻¹	281 ms ⁻¹	113 ms ⁻¹	103 ms ⁻¹
4	0.1 M NaOH	463 ms ⁻¹	87 ms ⁻¹	32 ms ⁻¹	46 ms ⁻¹
a) b) d)			H ₂ N (A) 0.1 M H (B) b) water (C) c) 0.1 M	CI, phosphate buffe	° r, pH = 7.2,

Incredible Scaffold Diversity from a Single "Click" Reaction

Rodopsin based homology model of h-MCR4

MCR's NK CCK Morphine etc

MCR4:

Energy homeostasis Food intake Obesity

C

GPCR library by Pictet-Spengler reactions

P C C

Structures of most active hits

Hit: 2.5-15

CONH₂

O C

Solution assays of selected PS-hits towards MCR4 P00

S

Conclusion:

A new plasmid construct for GPCR's was presented Stable reporter/GPCR expression was established Homogeneous cells by cloning Cellular adhesion to beads established Intramolecular click reactions for receptor ligand synthesis Merging peptide diversity with small molecule chemistry Extremely high scaffold and ligand diversity through one reaction Screening of GPCR's on solid support in split mix format.

Welcome to EPS in Copenhagen in 2010

EUROPEAN PEPTIDE SYMPOSIUM: 31EPS Jes of Peptides www.31eps.dk

THE 31'ST

Peptide Biochemistry and Biology Synthetic Chemistry of Peptides and AAs **Peptidomimetics** Peptide Synthesis and Technology **Peptide Properties Combinatorial Peptide Chemistry** Macromolecular Peptide Assemblies Ligation and Chemoselective PepChem Peptide Materials and Catalysts Antibacterial- CCP's and Lipo-peptides Peptide Signalling Neuro-peptides and Peptide Hormones Peptide Nanotechnology Expansion of the Genetic Code Prodrugs, Targeting and Uptake **Chemical Biology and Proteomics**

Bella Center www.bc.dk

