

Intramolecular N-AcylIminium Cascade reactions

Click reactions on solid support

For CombiChem and GPCR's

CECB

Nano-Science Center Copenhagen University Denmark

Quantitative on Resin Enzymatic Transformation:

Subtilisin/PEGA Trypsin/PEGA Chymotrypsin/PEGA Pepsin/PEGA Papain/PEGA MMP9/PEGA4000 or 6000 MMP12/PEGA Cruzipain/PEGA Leishmania-CP/PEGA Fucosyl transferase/PEGA4000 b-1,4-Galactosyltransf/PEGA Human and Yeast Prot. Disulf. Isom./PEGA4000

Solid phase

combinatorial chemistry

PEGA compatible with synthesis and biology

Unique platform for combinatorial synthesis Phosphine chemistry and iterative selection assays in biology. Catalytic C-C bond for

Quantitative on Resin Chemical Transformations: Diels-Alder Aldol Nitroaldol **Glycosylation** Transaminations **Metathesis** Wittig-reactions **Redox-reactions Dihydroxylation-oxidations** WHE-reactions **C-Allylations Phosphorylations** Sulfatations Silylations **CuAAC-reactions N-Acyl** iminium ion reactions **N-Carbamyl iminium reactions Carbene chemistry Palladation Catalytic C-C bond formations** Sonogashira Suzuki

Unexpected observation......New reaction

INAIC reaction: Building Blocks

Double alkylation of malonic ester

Stereo-selectivity of the INAIC reaction

Indoles in INAIC reactions

Scaffold diversity: INAIC Reaction

HPLC's of crude products; purity >95%; *dr* = 1:1

INIAC: Regioselectivity

(Rus

Scaffold diversity: Fused Aromatic Ring-systems

Entry	V X	n	R ²	Purity (%)
1	0	1	Нс	complex mixture
2	0	2	н	>95
3	0	2	<i>i</i> -Bu	>95
4	0	2	Bn	>95
5	S	1	н	91
6	S	1	<i>i</i> -Bu	94
7	S	1	Bn	>95
8	NH	1	н	>95
9	NH	1	<i>i</i> -Bu	91
10	NH	1	Bn	91
11	NH	2	н	>95
12	NH	3	н	>95
13	NH	4	Нс	complex mixture

Nano-Science Center Suzuki prior to INAIC reactions

Entry	Ar	Product, Purity (%)
1	Ph	IIIa, >95; IVa, >95
2	4-Me-Ph	IIIb, >95; IVb, >95
3	4-(CHO)-Ph	IIIc, >95; IVc, >95
4	2-MeO-Ph	llld, >95; IVd, >95
5	4-BuO-Ph	IIIe, 89; IVe, >95
6	4-MeS-Ph	IIIf, 85; IVc, 90
7	4-MeO-Ph	<mark>lllg, >95</mark> ; IVg, >95
8	4-MeO-3-CI-Ph	lllh, >95; IVh, >95
9	3-CF ₃ -Ph	<mark>IIIi, >95;</mark> IVi, >95
10	3,5-(MeO)₂-Ph	<mark>IIIj, >95</mark> ; IVj, >95
11	4-CI-Ph	<mark>IIIk, >95;</mark> IVk, >95
12	3,4-(OCH₂O)-Ph	IIII, >95; IVI, >95
13	3-NO ₂ -Ph	IIIm, >95; IVm, >95
14	3-(CHO)-4-MeO-Ph	IIIn, >95; IVn, >95

HPLC's of crude product; purity >95%

dppf: 1,1'-Bis(diphenylphosphino)ferrocene

8 examples

HN

b) 0.1 M NaOH (aq), then 0.1 M HCI (aq)

8 examples

.Gly-OH

0

Vinylic precursors for INAIC reactions Nano-Science Center

а-с

(78%)

a-c

= HMBA-NH-PEGA₈₀₀

Acrylamides

TBAF, AcOH, THF

50% TFA (CH₂Cl₂)

(e) 0.1 M NaOH

10% TFA (aq)

Dess-Martin periodinane

(a)

(b)

(c)

(d)

(e)

$\begin{array}{c} & & H & O \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$

Entry	Alkene	R	n	Product ^{<i>b</i>} , purity (%)
1	22a	Н	0	23a , >95
2	22b	Н	1	23b , 76
3	22c	Н	2	23c , 0
4	22d	OMe	0	23d , >95
5	22e	OMe	1	23e , 66
6	22f	OMe	2	23f , 0

(a) OsO4/NaIO4/DABCO, THF:H2O (1:1);

(b) 10% TFA (aq);

(c) 50% TFA (CH2Cl2);

(d) 0.1 M NaOH (aq).

Scaffold diversity INAIC Reaction

	Entr y	Silylether	R	n	Product, purity (%)
	1	33	Н	0	23a , 86
	2	34	Н	1	23b , 43
	3	35	Н	2	23c , 0
	4	36	OMe	0	23d , 89
	5	37	OMe	1	23e , 47
]	6	38	OMe	2	23f , 0
	7	39/42	H/Boc	0	45 , 93
	8	40/43	H/Boc	1	46 , 0 ^b
	9	41/44	H/Boc	2	47 , 0 ^b

INAIC reactions

$() \qquad (>95\%)$

= HMBA-NH-PEGA₈₀₀

O S Boc		Phe-Gly	A or B	o		Gly-OH
Entr y	X	R	Y	n	\tilde{H} Reaction condition s^a	Product , purity (%)
1	Ot-Bu	Н	0	0	В	>95
2	Ot-Bu	Me	0	0	A or B	>95
3	OTrt	Н	0	1	A or B	>95
4	NHBoc	Н	NBoc	0	А	>95
5	NHBoc	Н	NBoc	1	А	86
6	NHBoc	Н	NBoc/NH	2	A/B	0
7	STrt	Н	S	0	A or B	>95

Heteronucleophiles in 6,6 rings

Conditions A:

- 10% TFA (aq)
- 0.1 M NaOH (aq).

Conditions B:

- 10% TFA (aq)
- 50% TFA (CH_2Cl_2)
- 0.1 M NaOH (aq)

INAIC reaction scope

Nano-Science Center α-Amino acids as a source of diversity

N-Carbamyliminium ions in imidazolone synthesis

INCIC: Less reactive nucleophiles give imidazolones

INAIC: Less reactive nucleophiles give cascade reactions

Nano-Science Center INIAC: Bromination on solid phase

	Phe-	ation >	O Ph O N H S 6.7	e – 🕜 P Br
Br	solvent	equiv.	reaction time (min)	purity (%)
NBS	DMF	4	30	39
NBS	DMF	12	30	28
NBS	AcOH	2	45	59
NBS	AcOH:CHCl ₃	2	45	70
NBS	MeCN	2	45	65
NBS	CH_2Cl_2	2	45	79
NBS	AcOH: CH_2Cl_2	2	90	71
NBS	AcOH: CH ₂ Cl ₂	3	90	52
Br ₂	AcOH	2	90	>95
Br ₂	CHCl ₃	2	90	45 ^b
Br ₂	DMF	2	90	26 ^b

^b Incomplete conversion of substrate

INAIC: Suzuki reactions

on preformed scaffolds from 3-thienyl-Ala

ArB(OH) ₂	Purity (%)
$3-NH_2-C_6H_4B(OH)_2$	92
$3-OH-C_6H_4B(OH)_2$	95
$2\text{-}CF_3\text{-}C_6H_4B(OH)_2$	87
$3-CF_3-C_6H_4B(OH)_2$	92
$4\text{-CO-Ph-C}_6H_4B(OH)_2$	90
3,4-(OCH ₂ CH ₂ O)-C ₆ H ₃ B(OH) ₂	86
(2-OMe)pyrimidine-5-B(OH) ₂	65
(2-OMe)pyridine-5-B(OH) ₂	81
Benzothiophene-2-B(OH) ₂	91
Indole-2-B(OH) ₂	50

•		
	3-Cl-4-OMe- C ₆ H ₃ B(OH) ₂	87
	4-CHO-C ₆ H ₄ B(OH) ₂	75
	$C_6F_5B(OH)_2$	0
	$3-NO_2-C_6H_4B(OH)_2$	88
	$4-OBu-C_6H_4B(OH)_2$	82
	3,4-(OMe) ₂ -C ₆ H ₄ B(OH) ₂	85
	3,5-(OMe) ₂ -C ₆ H ₄ B(OH) ₂	92
	$4-CF_3-C_6H_4B(OH)_2$	86
	$3,4-Cl_2-C_6H_4B(OH)_2$	89
	PhB(OH) ₂	86

INAIC - Bromination - Suzuki

preformed scaffolds from 2-thienyl-Ala

	%	2,6-Me ₂ -C ₆ H ₃ B(OH) ₂	50
	85	$3-CO_2H-C_6H_4B(OH)_2$	69
	86	3-(CHO)-4-(OMe)-C ₆ H ₃ B(OH) ₂	61
	87	$C_6F_5B(OH)_2$	0
	86	$4-Me-C_6H_4B(OH)_2$	77
	89	$2\text{-Ac-C}_{6}H_{4}B(OH)_{2}$	68
	87	3,5-(OMe) ₂ -C ₆ H ₃ B(OH) ₂	86
	84	PhB(OH) ₂	75
I) ₂	90	$4-Cl-C_6H_4B(OH)_2$	85
	>95	$3,5-Me_2-C_6H_3B(OH)_2$	86
	85	$4-CF_3-C_6H_4B(OH)_2$	81

a Br₂, AcOH

b PhB(OH)₂, K₃PO₄, Pd(dppf)Cl₂ Tol:*t*-BuOH:H2O 65 °C, 4 h

c 0.1 M NaOH (aq)

er One vector, all GPCRs PAC1, VPAC1 and VPAC2

essential

Cell adhesion peptides Binding to the lipid

100₇

115 0546

140.0518 130.06

Nano-Science Center

Scaffold diversity: **Building Blocks**

Scaffold diversity: Library

Screening INAIC library

MC4R

Assay results

Activity assay for hits

Diversity from aromatic acetylenes

Diversity from aromatic acetylenes

b) 1,2-diaminobenzene, TBTU, NEM, DMF

Thanks

Conclusion: Screening molecular properties for cellular control Monoclonal GPCR – reporter gene assays N-acyliminium ion mediated reactions New small molecule scaffolds from peptides

Acknowledgement: Danish Natrional Research Foundation

Those who made it happen:

Frederik Diness Thomas E. Nielsen Sebastian Le Quement

Boqian Wu Lamine Bouakaz Grith Hagel