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In Figure 4, we compare calculated[2] (3D LM) and experimental [3] OH-stretching fundamental

transition intensities for five alcohols (methanol, ethanol, 1-propanol, 2-propanol and tert-

butanol). The three modes included in the LM model are the OH-stretching mode, the CO-

stretching mode and the COH-bending mode. The PES’s and DMF’s were calculated with

CCSD(T)-F12a/VDZ-F12 using MOLPRO 2012.1.

Figure 4: Calculated and experimental fundamental  transition intensities.

When a bimolecular complex is formed, six new low-frequency

intermolecular vibrations arise, due to the collective loss of three

rotational and three translational degrees of freedom for the

monomers. These intermolecular modes, illustrated in Figure 6 for the

water dimer,[4] significantly affect the OH-stretching mode directly

involved in the hydrogen bond.[5]

Figure 6: The six intermolecular modes of the water dimer. Mode (2) and (3)

severely affect the bound OH-stretching oscillator by partially breaking the hydrogen

bond for both positive and negative displacements.

1

4

2

5 6

3

1) Find equilibrium geometries

We solve the electronic Schrödinger equation with ab initio methods to find the relevant conformers.

2) Local Mode (LM) Coordinates (𝒒𝟏, 𝒒𝟐, … , 𝒒𝑴)

The q’s are defined based on the transitions of interest. Typically, vibrational modes that involve

movement of the same atoms are included in the LM model. In practice, q’s are defined from the

Z-matrix and one has to define a Z-matrix compatible the chosen q’s.

3) Potential Energy Surface (PES) and Dipole Moment Function (DMF)

In our calculations, the PES and DMF are typically truncated to only include pairwise coupling, i.e.

𝑉 𝑞1, 𝑞2, … , 𝑞𝑀 ≈෍

𝑖
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𝑉 𝑞𝑖 , 𝑞𝑗 .

The 1D PESs 𝑉 𝑞𝑖 are represented with spline fits and the 1D DMFs with sixth-order polynomials in

the displacement coordinates for each Cartesian component. PES cross-terms 𝑉 𝑞𝑖 , 𝑞𝑗 and DMF

cross-terms are expressed with 2D Taylor expansions in the respective displacement coordinates.

Molecular vibrational and rotational motion cannot be fully separated, but may be separated to the

maximum extend if the rotational Eckart condition is satisfied. The rotational Eckart condition is

෍

𝑎=1

𝑁

𝑚𝑎 𝑅𝑎 × 𝑼റ𝑟𝒂 = 0,

where 𝑚𝑎 is the mass of atom 𝑎, 𝑅𝑎 and റ𝑟𝒂 are the radius-vectors of atom 𝑎 in the equilibrium geometry

and in the vibrationally distorted geometry, respectively, and 𝑼 is the rotation matrix that rotates റ𝑟𝒂 to

satisfy the rotational Eckart condition. We employ a numerical method[1] to find 𝑼 and calculate each

dipole moment single point in the Eckart frame

5) Generate The M-Dimensional LM Hamiltonian

The LM Hamiltonian is obtained by transforming the nuclear Hamiltonian in Cartesian coordinates to

internal curvilinear coordinates,
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2
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ො𝑝𝑖𝐺 𝑞𝑖 , 𝑞𝑗 ො𝑝𝑗 + 𝑉 𝑞1, 𝑞2, … , 𝑞𝑀 + 𝑉′,

where Ƹ𝑝 is the momentum operator and 𝑉′ is the LM pseudopotential (often ignored). The LM Schrödinger

equation is first solved for each mode and the full LM Hamiltonian is then set up in a product basis of the

1D eigenfunctions ( ൿหv1 ൿหv2 … ൿหv𝑀 ) . The eigenvalues and eigenfunctions are obtained by diagonalizing the

full LM Hamiltonian.

6) Calculate Transition Intensities

We express transition intensities in terms of dimensionless oscillator strengths

𝑓𝑖→𝑓 = 4.702 ∙ [cm × D−2] ǁ𝜈𝑖→𝑓 𝑖 መറ𝜇 𝑓
2
,

where 𝑖 and 𝑓 are the initial and final states, ෤𝜈𝑖→𝑓 is the transition wavenumber in cm−1 and 𝑖 መറ𝜇 𝑓 is the

transition dipole moment expressed in Debye (D).

Figure 5: Calculated and experimental band profiles for the ∆vOH= 1 (left) and ∆vOH= 4 (right) region of 1-propanol.

The calculated spectra are normalized to the calculated oscillator strengths, hence the experimental and calculated

spectra can be compared in an absolute sense. PGOPHER is used to simulate the rotational fine structure.

Figure 1: Conformers of 1-propanol found with CCSD(T)/aug-cc-pVTZ.

Figure 2: Numeric and analytical G-matrix element for

the COH-bending mode in Gg-1-propanol. The

analytical G-matrix element has been slightly offset to

allow for a visual comparison.

Figure 3: Difference between the numeric and

analytical G-matrix element for the COH-bending

mode in Gg-1-propanol. The difference is on the

11th digit.

4) Calculate Wilson G-matrix elements

If not defined analytically, the elements of the 𝐺-matrix are calculated numerically from

𝑮 = 𝑱−1 𝑇𝑴−1𝑱−1 , with  𝑱𝑖𝛼 =
𝜕𝑥𝛼

𝜕𝑞𝑖
& 𝑴𝛼𝛽 = 𝑚𝛼𝛿𝛼𝛽, 

where 𝛼 = 1,2,… , 3𝑁 and 𝑥1, 𝑥2, 𝑥3 are the 𝑥-,𝑦- and 𝑧-coordinates of the first atom, 𝑥4, 𝑥5, 𝑥6 are the 𝑥-,𝑦-

and 𝑧-coordinates of the second atom, etc. In practice, the Z-matrix is used to generate the change in all

3N-6 q’s and the Jacobian is then augmented with three rotational and three translational components.
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Figure 7: Room temperature gas phase FTIR spectrum in the OH-stretching

region of H2O DMA. The three bands are assigned as; the first HOH-bending

overtone (~3200 cm-1), the bound OH-stretching (OHb) fundamental transition

(middle) and the free OH-stretching OHf fundamental transition (right).

The equilibrium constant of complex formation may be obtained if

the oscillator strength and integrated absorbance of a transition

unique to the complex is know, as well as the pressure of the

monomers. The equilibrium constant is given by:

𝐾 =
PComplex × P

PH
2
O × PDMA

,

where P is the IUPAC standard pressure of 1 bar. We have used

a 3D+6D LM model to calculate the oscillator strength (Eq. 6) for

the free and bound OH-stretching fundamental transition in

H2O DMA. In Table 1, we show the equilibrium constant (Eq. 7) of

complex formation obtained from the bound and free OH-

stretching fundamental transition, respectively, at room

temperature (297±1K). [6]

Transition Intensities in Hydrogen Bound Complexes

1-propanol has five unique conformers that all contribute to the vibrational band profiles observed

at room temperature (Figure 5). The calculated spectra includes no empirical parameters except

for the line broadening, used in PGOPHER.

The amount of a molecular complex in a gas mixture is proportional

to the integrated absorbance 𝐴׬) ෤𝜈 𝑑 ෤𝜈) of a transition unique to

the complex, and inversely proportional to the corresponding

oscillator strength (𝑓),

PComplex ∝
𝐴׬ ǁ𝜈 𝑑 ǁ𝜈

𝑓
.

H2O DMA OHb OHf

K(297±1K) 0.26±0.06 0.23±0.02

In Figure 7, we show a room temperature fourier-transform infrared

spectrum (FTIR) gas phase spectrum in the OH-stretching region of

the water dimethylamine complex (H2O DMA).

(7)

The Local Mode Model The OH-Stretch in 1-Propanol

𝐀𝐧𝐚𝐥𝐲𝐭𝐢𝐜 (𝐨𝐟𝐟𝐬𝐞𝐭)

𝐍𝐮𝐦𝐞𝐫𝐢𝐜

Table 1: Equilibrium constant of complex formation for H2O DMA at 297±1 K.

The PES and DMF is calculated with CCSD(T)-F12a/VDZ-F12.
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